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Summary

A computer program (ORB) has been developed to predict 1H, 13C and 15N NMR chemical shifts of
previously unassigned proteins. The program makes use of the information contained in a chemical shift
database of previously assigned proteins supplemented by a statistically derived averaged chemical shift
database in which the shifts are categorized according to their residue, atom and secondary structure
type [Wishart et al. (1991) J. Mol. Biol., 222, 311–333]. The prediction process starts with a multiple
alignment of all previously assigned proteins with the unassigned query protein. ORB uses the sequence
and secondary structure alignment program XALIGN for this task [Wishart et al. (1994) CABIOS, 10,
121–132; 687–688]. The prediction algorithm in ORB is based on a scoring of the known shifts for each
sequence. The scores depend on global sequence similarity, local sequence similarity, structural similarity
and residue similarity and determine how much weight one particular shift is given in the prediction
process. In situations where no applicable previously assigned chemical shifts are available, the shifts
derived from the averaged database are used. In addition to supplying the user with predicted chemical
shifts, ORB calculates a confidence value for every prediction. These confidence values enable the user
to judge which predictions are the most accurate and they are particularly useful when ORB is incorpor-
ated into a complete autoassignment package. The usefulness of ORB was tested on three medium-sized
proteins: an interleukin-8 analog, a troponin C synthetic peptide heterodimer and cardiac troponin C.
Excellent results are obtained if ORB is able to use the chemical shifts of at least one highly homologous
sequence. ORB performs well as long as the sequence identity between proteins with known chemical
shifts and the new sequence is not less than 30%.

Introduction

NMR spectroscopy is now used routinely for the deter-
mination of protein solution structures. The process of
generating a new NMR structure is, however, quite time-
consuming, with the sequential assignment of the NMR

spectra being the time-limiting step. For small or medium-
sized proteins and peptides, the sequential assignment
process relies primarily on conventional two-dimensional
homonuclear methods (Wüthrich, 1986). For larger mol-
ecules, several strategies based on various heteronuclear
experiments have been proposed for sequence specific
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assignments (Bax and Grzesiek, 1993). To accelerate the

Fig. 1. Flow chart of the computer program ORB, presenting an outline of the chemical shift prediction process using ORB. All steps are further
described in the Algorithm section.

assignment process, some of these methods have been
automated over the last several years (Kleywegt et al.,
1991; Hare and Prestegard, 1994; Kjaer et al., 1994; Ol-
son and Markley, 1994; Zimmermann et al., 1994; Morel-
le et al., 1995; Bartels et al., 1996). With the exception of
Bartels et al. (1996) all these methods use only the infor-
mation contained in the NMR spectra of interest. The
latter method is able to incorporate additional structural
and/or chemical shift information obtained from one
highly homologous protein.

It is obvious that it would be of considerable advan-
tage for the assignment process, whether manual or auto-
matic, to have a precise prediction of the expected 1H, 13C
and 15N NMR chemical shifts. During the last years,
several attempts have been made to theoretically calculate
NMR chemical shifts from known secondary and tertiary
structure elements (de Dios et al., 1993; Ösapay and Case,
1994; Williamson et al., 1995). In this paper, we use a
different approach. With complete or nearly complete

chemical shift assignments for more than 200 peptides and
proteins now deposited in the BioMagResBank (Seavey et
al., 1991), it seems logical to use all this prior knowledge
in the process of predicting chemical shifts for a new
protein. With a knowledge of the expected chemical shifts,
the assignment process becomes less dependent on NOE
and/or other connectivity information. This could sub-
stantially reduce the time required for NMR data collec-
tion and interpretation. The purpose of ORB is to appro-
priately combine the information of the database of previ-
ously assigned homologous sequences with averaged NMR
chemical shift information to obtain a chemical shift
prediction for a new sequence. In the process of testing
ORB, we have decided to investigate the advantages of a
database containing multiple homologous assignments.
This is important if the previously assigned proteins have
varying homologies to different regions of the query
sequence. ORB is able to calculate a separate weight for
every known shift to take these different sequence similar-
ities into account. Using a database of previously assigned
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sequences allows ORB to estimate error ranges for every
predicted shift, therefore providing the user with a confi-
dence measurement for any given shift.

In the last few years, there have been systematic inves-
tigations to create averaged chemical shift databases
based on previously assigned proteins or model peptides
(Wishart et al., 1991,1995; Wishart and Sykes, 1994;
Merutka et al., 1995). ORB incorporates the database
developed by Wishart et al. (1991) in which the chemical
shifts are categorized with respect to their residue, atom
and secondary structure type. This database allows ORB
to perform predictions in regions for which no homology-
based assignments are possible. We describe in detail how
ORB evaluates the applicability of previously assigned
proteins and how it uses this information supplemented
with averaged database values to predict chemical shifts
for the unassigned homolog. ORB was tested on three
different medium-sized proteins: an interleukin-8 analog,
a synthetic troponin C heterodimer and cardiac troponin
C. To predict chemical shifts for these proteins, databases
compiled from six to 11 previously assigned proteins were
used. The interleukin-8 analog was selected because a
database of very highly homologous previously assigned
proteins was available for this protein. For the second
and third proteins, the available databases contained less
homologous previously assigned proteins. This enables us
to investigate how ORB performs under increasingly
difficult conditions. In addition, we explore the possibility
of predicting the shifts of an intact protein from the shifts
of several smaller fragments of similar proteins. We also
investigate using only one homologous previously assigned
protein as opposed to a complete database of assigned
proteins. On the basis of these results, we discuss the
strengths and limitations of homology-based chemical
shift predictions as used in ORB.

Algorithm

In essence, the ORB prediction algorithm is based on
the use of previously assigned homologous proteins sup-
plemented by an averaged NMR chemical shift database.
Figure 1 displays the ORB flow chart. As seen in this
chart, it is necessary to begin by obtaining a multiple
sequence alignment of the unassigned protein of interest
with a set of assigned homologous proteins. The align-
ment enables the program to find all the homologous
shift information which pertains to any particular shift of
the query protein. It is optional at this point to incorpor-
ate predicted secondary structure information for the new
sequence prior to the sequential alignment.

Making a single chemical shift prediction can simply
be a matter of taking a weighted average of the corre-
sponding chemical shift data of the homologous proteins.
In ORB the weight assigned to each homologous shift is
determined by the following factors, which will be de-

scribed in more detail below: (i) global sequence similar-
ity; (ii) local sequence similarity; (iii) secondary structure
similarity; and (iv) residue similarity. The weighting func-
tion becomes somewhat more complex because averaged
NMR chemical shift database values are considered in the
prediction process when the homologous chemical shift
data are deemed to be poor or unavailable. In the final
step of the assignment process, the program calculates a
confidence interval for each chemical shift prediction
based on the quality of the homologous shift data.

Averaged chemical shift database
ORB contains three averaged NMR chemical shift

databases for 1H, 13C and 15N chemical shifts. The chemi-
cal shift databases were derived from a statistical analysis
of the chemical shifts, sequences and secondary structures
of 78 different proteins for the 1H chemical shifts (Wis-
hart et al., 1991) and of 12 different proteins for the 13C
chemical shifts (Wishart and Sykes, 1994). From these
data, it is possible to calculate average 1H and 13C chemi-
cal shifts for all 20 amino acids in each of three second-
ary structure categories: α-helices, β-sheets and ‘coil’
regions. Because 15N chemical shifts are almost invariant
to secondary structure, it is sufficient to use random coil
values for the averaged 15N chemical shift database. The
15N chemical shifts were derived from an analysis of Gly-
Gly-X-Ala-Gly-Gly hexapeptides (Wishart et al., 1994).
These three databases enable ORB to predict chemical
shifts according to the presumed or known secondary
structure of the query sequence. They are particularly
useful if no applicable homologous chemical shift infor-
mation is available.

Alignment of previously assigned homologous sequences
with the query sequence

A correct alignment between the query sequence and
its homologs is critical to comparing, analyzing and pre-
dicting chemical shifts. At this point, it is the responsibil-
ity of the user to provide ORB with a set of previously
assigned homologous proteins. Because the multiple se-
quence alignment problem is intrinsically difficult to
solve, it was decided, for the sake of functionality, that an
established program should be used to address this issue.
ORB makes use of the XALIGN program (Wishart et al.,
1994) that is included in the ORB package to accomplish
this task. Consequently, ORB was designed to read the
XALIGN output format. A user can choose, by some
other method, to create his/her own alignment file, pro-
vided it conforms to the XALIGN output format.

Weighting homologous shift data
There are many factors which can be considered in de-

termining the applicability of homologous shift data to
predict the chemical shifts of a query protein. Each homo-
logous protein, more accurately, each shift/atom, is com-



168

pared to the query protein and weighted according to the

Fig. 2. Example of an alignment window where l is the residue num-
ber of the first two aligned amino acids and m is the residue number
of the last two aligned amino acids. The reference residue numbers are
obtained from the query sequence.

Fig. 3. The secondary structure similarity matrix used within ORB.
This matrix is used by ORB to determine regions in which the second-
ary structure is conserved between sequences. The highest values are
assigned to β-sheet, α-helix and turn regions.

following criteria. The specified variables are set in an
ORB parameter file. The program model assumes hereby
that previously assigned shifts with higher similarity scores
are considered more reliable for chemical shift prediction
than those with lower similarity scores.

Global sequence similarity
Each homologous protein is compared to the query

protein and the overall level of primary sequence similar-
ity is determined, using the following four steps:

(1) Define the alignment window W(l,m), where l is the
residue number of the first pair of amino acids which
align between the two sequences and m is the last pair of
amino acids in the alignment. This is clarified in Fig. 2.

(2) Using an amino acid similarity weighting matrix,
find yo, the sum of all amino acid pair scores in W. The
chosen similarity weighting matrix was originally devel-
oped for multiple sequence alignments in the program
SEQSEE (Wishart et al., 1994).

(3) Determine the perfect alignment score yp, by sum-
ming all amino acid pair scores of the query protein with
itself in W.

(4) Calculate the global sequence homology gss(i), with
i being the sequence number of the particular homologous
sequence in the multiple alignment:

gss i
y

y
o

p
( ) ( )= 100

1

Local sequence similarity
Local sequence similarity lss(i,r) uses the same algo-

rithm as global sequence similarity except that the align-
ment window W is defined as W(r−s, r+s) and 2s+1 de-
fines the window size. In calculating the local sequence
similarity, the amino acids in all previously assigned se-
quences are renumbered according to their alignment with
the query sequence to ensure that all residues that match
in the multiple alignment have the same residue number
r. In our program model, we typically set s = 3.

Structural similarity
Structural similarity considerations within ORB are

limited to an assessment of secondary but not tertiary
structure similarity. If the secondary structure of the
query sequence is unknown, it can be obtained from a
homologous X-ray or NMR structure. Alternatively, this
information can be obtained from a variety of secondary
structure prediction programs (Chou and Fasman, 1974,
1978; Garnier et al., 1978; Eisenberg et al., 1984; Levin et
al., 1986; Gibrat et al., 1987; Williams et al., 1987; Levin
and Garnier, 1988; Rooman and Wodak, 1988,1990,1991).

The calculation of the structural homology score sss(i,r)
is identical to the local sequence similarity score, except
that a secondary structure similarity weighting matrix
(Fig. 3) is used instead of an amino acid similarity matrix
in the calculation of yo and yp.

Note that, in this example, the sum for the perfect
score yp is calculated according to the following formula:

yp = (2s + 1) max(secondary_structure_matrix_value) (2)

This ensures that perfect matches of ‘coil’ with ‘coil’ are
scored lower than perfect matches between defined sec-
ondary structure elements. In our programming model,
we typically set s = 2.

Residue similarity
Residue similarity describes the similarity between

shifts arising from residues that differ in type, but have
the same sequence position. For example, one could use
an assigned leucine Hα to predict a corresponding alanine
Hα in the query sequence via the following formula:

A(Hα) = (L(Hα) − L(dbHα)) + A(dbHα) (3)

where A(dbHα) and L(dbHα) are statistical chemical shift
values derived from the averaged chemical shift database.
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The applicability of this converted shift information is

Fig. 4. Example of an ORB parameter file. It is possible for users to adapt this file to their specific needs. All the parameters are described in detail
in the Algorithm section.

determined by the residue similarity matrix, and a residue
similarity score rss(i,r,a) is assigned to each known shift,
where a is the specified atom in a particular residue.

The residue similarity matrix was generated by com-
paring the random coil chemical shifts of the same atoms
in different amino acids, for instance a leucine Hα with a
threonine Hα. The scores in this residue similarity matrix
range from zero to 10, with the highest scores assigned to
the pairs with the lowest random coil chemical shift dif-
ferences. To generate the matrix, individual step sizes
were used depending on the type of atom. In particular,
0.2 ppm steps were used for 1H chemical shifts, 1.5 ppm
steps for 15N chemical shifts, 5.0 ppm steps for 13C Cβ

chemical shifts and 1.8 ppm steps for all other 13C chemi-
cal shifts. For example, the score for a leucine Hα/alanine
Hα pair would be 10 because the difference in their ran-
dom coil chemical shifts is less than 0.2 ppm.

Combining the various similarity factors
ORB uses a special weighting scheme to combine the

above factors into a single chemical shift applicability
score. The ORB programming model uses the equation
below:

x(i,r,a) = cgss (gss(i) − gss0) + clss (lss(i,r) − lss0)

+ csss(sss(i,r) − sss0) + crss (rss(i,r,a) − rss0)
(4)

where x(i,r,a) is the applicability score for homologous
shift i,r,a, and c is the coefficient for relative factor weight-
ing (for example, one could choose to weight local homo-
logy more heavily than global homology). gss,lss,sss,rss
represent the score for a particular factor. gss0,lss0,sss0,rss0

represent the minimum score for a particular factor. The
advantage of including this term enables x(i,r,a) to be <0.
This identifies the shifts which do not meet a minimum
criterion. Any x(i,r,a) < 0 is set to 0 for programming
convenience, which means this particular previously as-
signed shift is not used in the prediction process. The
current values were determined in an extensive testing
process. However, they can be changed individually in the
ORB parameter file.

Calculating the predicted shift
The following equation is used by ORB to calculate a

final predicted shift s(i0,r,a), with i0 being the sequence
number of the query protein:
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where x0 is the weight assigned to database shift, shift0(i0,
r,a) is the averaged database shift value, x(i,r,a) is the
homologous shift applicability score, new_shift(i,r,a) is the
new_shift calculated according to Eq. 3 and n is the num-
ber of sequences in multiple alignment. Typically, x0 is set
to a small number in the ORB parameter file in order to
emphasize homologous shifts which exceed the minimum
applicability standards.

Equations 1–5 describe the essence of the chemical
shift prediction protocol in ORB. We have further experi-
mented with an exponential transformation function on
the x(i,r,a) values. This serves to weight the most similar
shifts to an even higher degree. The following equation
will accomplish this:

a(i,r,a) = x(i,r,a)z (6)

where z is an exponential factor >1.
In summary, the chemical shift prediction is a weighted

average of known homologous chemical shifts which is
supplemented in cases of low homology by averaged
database information. In the shown example parameter
file (Fig. 4), global sequence similarity, local sequence
similarity and residue similarity are all assigned the same
weight, while structural similarity is not used. However,
all parameters are user adjustable for increased flexibil-
ity. Figure 5 shows an example of the extended ORB
prediction file, illustrating how the predicted shifts are
derived.

Analysis of predicted shifts
The final prediction file (Fig. 6) contains all predicted

1H, 13C and 15N chemical shifts for the query sequence. It



170

also includes the expected standard deviations for all

A

B

Fig. 5. Example of an extended ORB prediction file. All the information necessary to predict a single chemical shift is shown. Figure 5A displays,
for a single specified residue, all previous assigned sequences Sequence(i) that were used in the prediction process together with the corresponding
global, local and structural similarity values gss(i), lss(i,r) and sss(i,r). The predicted sequence Predict is the sequence(i0). Figure 5B shows the
predicted Atom(i0,r,a) in the first column and the predicted shift s(i0,r,a) in the next column. The third column contains all previously assigned
sequences Sequence(i) together with their corresponding chemical shift values PPMVal(i,r,a) in the next column. Column five contains the residue
similarity scores rss(i,r,a) for the previous assigned atoms. The offsets Offset(i,r,a) between measured ppm values and their corresponding random
coil values are displayed in column six. In the next column, these offsets are added to the corresponding random coil value of the predicted atom
to get the so-called new_shift(i,r,a). The last column contains the percentage to which one particular previous assigned shift is used in the prediction
process PctWt(i,r,a).

predicted shifts. These standard deviations provide an
estimate of the accuracy (and a level of confidence) for
the predicted shifts. Currently, two methods are used to
calculate these standard deviations. Method 1 uses Eq.
7:

stdev i r a
sd i r a

ns
rdmc_ ( , , )

( , , )
( )1 70

0=

This method uses the random coil standard deviation
sdrdmc(i0,r,a) (Wishart et al., 1991) divided by the number
of sequences in the multiple alignment for which shifts are
known (ns). If one only has a single previously assigned
sequence, one would always obtain half of the random
coil standard deviation by this method. Method 2 uses

Eq. 8:
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Method 2 (which is more accurate) is only used if more
than one previously assigned sequence is available for the
prediction process. In this method, the standard deviation
sd(i0,r,a) is first calculated from all new_shifts that corre-
spond to one particular predicted shift s(i0,r,a). Second, a
weighted average of sd(i0,r,a) and sdrdmc(i0,r,a) is calcu-
lated to obtain stdev_2(i0,r,a).
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In order not to overestimate the quality of the predic-

Fig. 6. Example of a final prediction file. The first two columns contain the atom names together with the corresponding predicted chemical shifts.
The predicted standard deviations are displayed in the third column. The next two columns show the corresponding random coil shifts and
standard deviations. The last two columns contain the confidence values, ranging from − for random coil shifts only to **** for highest confidence,
and a prediction of the expected secondary structure.

TABLE 1
DATABASE OF PREVIOUSLY ASSIGNED PROTEINS OF THE CXC CHEMOKINE FAMILY

Sequence Percent identity to IL-8 (4–72) Reference

IL-8 analog (6–72) 097 Rajarathnam et al. (1994)
IL-8 analog (5–72) 099 Rajarathnam et al. (1994)
IL-8 L25NMe (4–72) monomer 100 Rajarathnam et al. (1995)
IL-8 analog (4–72) 100 Rajarathnam et al. (1994)
IL-8 native (1–72) (A) 100 Rajarathnam et al. (1994)
IL-8 native (1–72) (B) 100 Clore et al. (1989)
IL-8 R6K analog (4–72) 099 Rajarathnam et al. (1994)
IL-8 H33A analog (4–72) 097 Rajarathnam et al. (1994)
IL-8 E38A analog (4–72) 099 K. Rajarathnam (1996) personal communication
IL-8 I10A analog (4–72) 099 Rajarathnam et al. (1994)
PF4-M2 (1–67) 038 Mayo et al. (1995)
MGSA (1–72) 044 Kim et al. (1994)

tions, the method that gives the larger standard deviations
in a particular case is generally used. To provide a simple
measure of the quality of the results, a qualitative assess-
ment called Confidence is incorporated in the final predic-
tion file. The Confidence level is based on the standard
deviation assigned to the predicted shifts. A small stan-
dard deviation suggests a high level of confidence and
vice versa. The level of confidence is qualitatively indi-
cated by a symbolic range from ‘−’ to four ‘*’. The last
column of the prediction file contains a prediction of the
expected secondary structure derived from the predicted
Hα and Cα chemical shifts. This secondary structure pre-
diction is based on the chemical shift index method (Wis-
hart et al., 1992; Wishart and Sykes, 1994). If a set of
reference shifts is available (these could be, for example,
shifts from a previous NMR assignment at a different pH
or temperature), it is possible to graphically analyze the
predicted shifts. This can be done individually for each
type of atom (Hα, HN, etc.). Examples for this procedure
are shown in the Results section.

Results

Three systems were investigated to evaluate the extent
to which ORB is able to predict 1H, 13C and 15N chemical
shifts for an unassigned query sequence. To evaluate the
performance of ORB under various conditions, we used
the following four testing schemes on the three test sys-
tems: (i) predictions using random coil shifts alone; (ii)
predictions using only the shifts of the least homologous
sequence; (iii) predictions using only the shifts of the most
homologous sequence; and (iv) predictions using the shift
information from all available homologs. The ORB para-
meters shown in Fig. 4 were used throughout the predic-
tion process, if not otherwise stated. Structural homology
considerations were not included in these tests because the
secondary structures of all query proteins were assumed
to be unknown.

The first protein analyzed was IL-8 (4–72), a 69-residue
homodimeric protein of the CXC chemokine family which
is missing the first three N-terminal residues. IL-8 (4–72)
contains extensive β-sheet structures and one α-helix
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Fig. 7. Results from the chemical shift predictions of the backbone HN and Hα nuclei of IL-8 (4–72) plotted as a function of residue number. The
diagrams show observed shifts minus predicted shifts. The leftmost column contains the results for HN shifts while the rightmost column contains
the corresponding results for Hα shifts. (A, B) Results obtained using only random coil data. (C, D) Results obtained using the least homologous
sequence supplemented with random coil values. (E, F) Results obtained using the most homologous sequence supplemented with random coil
values. (G, H) Results where the prediction process uses the whole database of previously assigned sequences supplemented with random coil
values. Note that no points are shown for proline residues and that the comparisons for the HN shifts start with residue 5 while the comparisons
for the Hα shifts start with residue 6.
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packed into a well-defined tertiary structure. To predict

TABLE 2
STATISTICS FOR CHEMICAL SHIFT PREDICTION FOR IL-8 (4–72)

Average error HN (ppm) Correlation coefficient HN Average error Hα (ppm) Correlation coefficient Hα

Random coil shifts 0.77 −0.14 0.49 0.18
Least homologous shifts 0.61 −0.53 0.41 0.75
Most homologous shifts 0.02 −1.00 0.01 1.00
All homologous shifts 0.06 −0.99 0.03 1.00

the chemical shifts for this protein, a chemical shift data-
base consisting of the 1H chemical shifts of 11 homolo-
gous proteins was used (Table 1). Note that the shifts of
IL-8 (4–72) were not used for the prediction process; they
were only used for comparing predicted shifts with the
observed shifts to assess the quality of the predictions.
The prediction process began with a multiple sequence
alignment of all 12 sequences including IL-8 (4–72) (data
not shown) using the program XALIGN (Wishart et al.,
1994). The sequence identities for all the sequence pairs
compared to IL-8 (4–72) are shown in Table 1. Note that
the sequence identities were obtained using the multiple
sequence alignment of all sequences in Table 1.

For the first test with this system, only random coil
chemical shifts were used to predict shifts for IL-8 (4–72).
For the second test, only the shifts of PF4-M2, which has
the lowest pairwise sequence identity of 38% with IL-8
(4–72), were used supplemented with random coil shifts
to predict IL-8 (4–72). For the third test case, the shifts
of the most homologous sequence IL-8 (1–72) (A), which
has 100% sequence identity to IL-8 (4–72) and contains
three additional N-terminal residues, were used supple-
mented with random coil data for predictive calculations
using ORB. For the fourth test case, the shifts of all
assigned homologous sequences were used supplemented
with random coil values for the predictions. For the entire
testing, HN and Hα atoms were chosen as representative
atoms for all residues. In the following, the predicted HN

and Hα shifts were compared with the experimentally
determined shifts of IL-8 (4–72) (Fig. 7 and Table 2). The
average error shown in Table 2 is the sum of the absolute
values of all the chemical shift differences in parts per
million (ppm) between the observed and predicted shifts
for the selected nuclei divided by the number of residues.
In addition to the average errors, Table 2 contains the
corresponding Pearson correlation coefficients (Larsen
and Marx, 1981). Both methods are well known and
widely used for NMR chemical shift comparisons and
both are included for the sake of comparison. The results
from the first case show that using only random coil
values for the prediction can lead to large errors of up to
4 ppm for the HN shifts and up to 3 ppm for the Hα

shifts. As might be expected, there is no regular pattern
observed for the predicted HN shifts and they vary widely
throughout the sequence. This indicates, at least in this

example, that random coil chemical shifts alone are not
suitable for accurately predicting HN shifts. Similar con-
clusions can be made about the Hα shifts. If the predicted
Hα shifts are compared with the secondary structure of
other IL-8 analogs (data not shown), it is apparent that
the observed shifts in regions that are in β-sheets (Lys23 to
Glu29, Ala35 to Leu43, Gly46 to Cys50) are shifted downfield
compared to the random coil shifts, while the observed
shifts in α-helical regions (Asn56 to Ser72) are shifted up-
field compared to the random coil shifts (Fig. 7). Using
secondary structure information would certainly help the
predictions if information about the secondary structure
was available. A large error of almost 3 ppm is observed
for Pro16 (Fig. 7) where the real observed shift is at 1.6
ppm due to a ring current effect caused by Trp57 (actual
sequence not shown). In the second test case, large shift
differences of up to 3 ppm were still observed between ob-
served and predicted shifts for the HN protons, especially
in the N-terminal region. The average error decreased for
the HN shifts from 0.77 to 0.61 ppm. The same was true
for the Hα shifts, where the average error decreased from
0.49 to 0.41 ppm. The prediction for the Hα of Pro16 is
still off by about 3 ppm.

Dramatic improvements occurred in the third test. The
predictions were almost exact for the HN and Hα shifts,
with average errors of 0.02 and 0.01 ppm, respectively.
These results are close to the precision at which these
shifts were experimentally determined. In the last test
case, the predictions are very close to the observed shifts
for both the HN and Hα shifts, with average errors of 0.06
and 0.03 ppm for the HN and Hα shifts, respectively.
Compared to the previous test case, the average error
increased by a small amount for both the HN and Hα

shifts. The likely cause for this increase is the inclusion of
sequences with low homology (38% sequence identity) in
the prediction. A possible solution would be to increase
the exponential factor z in the ORB parameter file, there-
by putting more weight on the shifts with the highest
sequence identity to the query sequence.

The second protein studied was the troponin C III.IV
heterodimer ((93–126) and (129–162)) (TF). This protein
represents the calcium binding sites III and IV of the
muscle protein troponin C. It consists mainly of α-helical
sections and some small β-sheet regions. A chemical shift
database consisting of the chemical shifts of eight addi-
tional homologous proteins was used in the prediction
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process. The percent pairwise sequence identities of all

TABLE 3
DATABASE OF PREVIOUSLY ASSIGNED CALCIUM BINDING PROTEINS

Sequence Percent identity to TF Percent identity to cNTnC Reference

TnC 096 053 Slupsky et al. (1995) and Slupsky and Sykes (1995)
NTnC0c 0− 053 Gagne et al. (1994)
NTnC2c 0− 053 Gagne et al. (1994)
CTnC 096 0− Calhoun and Sykes (1996)
TF 100 0− Shaw et al. (1992)
TT 065 0− Shaw et al. (1990)
CaM 034 047 Ikura et al. (1990)
cNTnC 0− 100 M.X. Li (1996) personal communication
CalB 036 019 Anglister et al. (1994)

TABLE 4
STATISTICS FOR CHEMICAL SHIFT PREDICTION FOR TF USING THE WHOLE AND SMALL DATABASES OF PREVIOUSLY
ASSIGNED PROTEINS

Average error HN (ppm) Correlation coefficient HN Average error Hα (ppm) Correlation coefficient Hα

Whole database
Random coil shifts 0.50 −0.07 0.27 0.53
Least homologous shifts 0.25 −0.88 0.13 0.92
Most homologous shifts 0.09 −0.98 0.04 0.99
All homologous shifts 0.09 −0.98 0.04 0.99

Small database
Most homologous shifts 0.22 −0.90 0.15 0.87
All homologous shifts 0.18 −0.93 0.10 0.95

sequences versus TF are shown in Table 3. Table entries
marked with a dash indicate, for all investigated proteins,
sequences which do not overlap with the query sequence
in the multiple alignment and, therefore, are excluded
from the prediction process.

The results for TF for all four test cases are displayed
in Fig. 8 and Table 4. Again, random coil shifts alone are
not sufficient for obtaining accurate predictions with
average errors of 0.50 and 0.27 ppm for the HN and Hα

shifts, respectively. On the other hand, a comparison with
the corresponding results for IL-8 (4–72) shows that the
random coil shifts give better predictions in this case,
especially for the Hα shifts. The improvement over the IL-
8 (4–72) random coil only predictions is due to the ab-
sence of extended β-sheet structure in TF. In the next test
case, the shifts of calmodulin (CaM), the database mem-
ber with the lowest pairwise sequence identity to TF
(34%) of all sequences that align with TF, were used
supplemented with random coil values. Compared to the
previous test case, the quality of the predictions improved
for the HN and the Hα shifts, with average errors of 0.25
and 0.13 ppm, respectively. The use of sequences with
such a low pairwise sequence identity is still sufficient to
substantially improve the predictions made solely using
random coil values. Due to the low sequence homology,
the ORB parameters were changed for this test. Specifi-
cally, the gss0, lss0, sss0 and rss0 values were divided by
two and the c0 value for the averaged database weighting

was divided by 10 to ensure a proper weighting of the
CaM shifts. Next, the shifts of the most homologous
sequence, C-domain cloned chicken troponin C (88–162)
(CTnC) with a pairwise sequence identity of 96% to TF,
were used supplemented with random coil values for the
prediction. CTnC was used in this case and not troponin
C 1–162 (TnC), which has the same pairwise sequence
identity to TF of 96%, because CTnC is more similar in
length to TF than TnC. The results improved dramatical-
ly, with average errors of 0.09 and 0.04 ppm for the HN

and Hα shifts, respectively. The only regions where small
errors occur in the predictions for both the HN and Hα

shifts are in the region around the gap in TF between
Gly126 and Val129, and for the last three residues in the C-
terminal portion of the molecule. Using the whole data-
base of all eight assigned sequences, predictions with
average errors of 0.09 and 0.04 ppm were obtained for
the HN and Hα shifts, respectively. This result is identical
to the previous test case. On the other hand, a graphical
inspection of the results (Fig. 8) shows that, compared to
the previous case (CTnC), the errors in the gap region are
getting smaller, especially for the Hα shifts. Overall, the
best results for TF were obtained if all eight assigned
proteins were used in the prediction process.

To simulate a case where only a smaller and less homo-
logous database of assigned sequences is available, TnC
and CTnC were eliminated from the database. In this
smaller database, the troponin C III.III homodimer ((93–
126) and (129–162)) (TT) has the highest pairwise sequen-
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ce identity of 65% to TF. The pairwise sequence identity

Fig. 8. Results from the chemical shift predictions of the backbone HN and Hα nuclei of TF plotted as a function of residue number. Other features
of the figure are as described in the caption to Fig. 7.

of TT is at approximately the midpoint between CalB and
CTnC in pairwise sequence homology to TF. First, the

shifts of TT supplemented with random coil values were
used to predict shifts for TF. The results displayed in Fig.
9 and Table 4 show an average error of 0.22 and 0.15
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ppm for the HN and Hα shifts, respectively. By using TT

Fig. 9. Results from the chemical shift predictions of the backbone HN and Hα nuclei of TF plotted as a function of residue number. In this
example, a reduced database of previously assigned proteins was used in the prediction process. The first two diagrams (A, B) contain the results
obtained when the shifts of the most homologous sequence supplemented with random coil values were used. The next two diagrams (C, D) display
the results obtained when the entire reduced database was used supplemented with random coil values.

TABLE 5
STATISTICS FOR CHEMICAL SHIFT PREDICTION FOR cNTnC

Average error HN (ppm) Correlation coefficient HN Average error Hα (ppm) Correlation coefficient Hα

Random coil shifts 0.45 0.23 0.27 0.48
Least homologous shifts 0.45 0.52 0.21 0.68
Most homologous shifts 0.34 0.59 0.17 0.84
All homologous shifts 0.33 0.61 0.15 0.83

instead of CTnC as the protein with the highest sequence
identity, the average error increased for the HN shifts by
around 2 times and for the Hα shifts by around 4 times.
Next, all six assigned sequences of the small database
were used supplemented with random coil values to pre-
dict shifts for TF (Fig. 9 and Table 4). The average errors
for the HN and Hα shifts of 0.18 and 0.10 ppm, respect-
ively, are 18% and 38% smaller than the errors obtained
in the previous case where only the TT shifts supplemented
with random coil shifts were used for the prediction. Here
it is very clear that the use of the entire database really
improves the results compared to the case where only the
most homologous sequence is used.

The third protein investigated was the N-domain of
cardiac troponin C (1–89) (cNTnC). This protein is an
89-residue monomeric protein. It consists mainly of α-

helical sections and some small β-sheet regions. The same
database of assigned proteins that was used for the first
four TF test cases, now including the shifts for TF and
excluding the shifts for cNTnC, was used for the predic-
tions of cNTnC. The four test cases were investigated as
described previously and the results for cNTnC are dis-
played in Fig. 10 and Table 5.

Using random coil values for the predictions gave to the
corresponding TF test case comparable average errors of
0.45 and 0.27 ppm for the HN and Hα shifts, respectively.

In the next case, the shifts of CalB were used supple-
mented with random coil data for the predictions. The
sequence identity of CalB to cNTnC is only 19%. To
ensure that CalB shifts were preferentially used in the
prediction process, the ORB parameters were changed as
described above for TF. The average errors of 0.45 and
0.21 ppm for the HN and Hα shifts, respectively, are simi-
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lar to the errors obtained using only random coil data.

Fig. 10. Results from the chemical shift predictions of the backbone HN and Hα nuclei of cNTnC plotted as a function of residue number. Other
features of the figure are as described in the caption to Fig. 7.

Apparently, proteins with sequence identities to the query
protein of less than 20% are not useful in the prediction

process. The results improved significantly when the shifts
of the most homologous sequence of apo N-domain tro-
ponin C (1–90) (NTnC0c) with a sequence identity of
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53% to cNTnC supplemented with random coil shifts
were used for the prediction. Average errors of 0.34 and
0.17 ppm were obtained for the HN and Hα shifts, respect-
ively. Compared to the corresponding test cases for IL-8
(4–72) and the first series for TF, the precision of the
predictions has dropped, which is a result of the lower
sequence identity of the most homologous sequence.
Using the whole database of all assigned sequences im-
proves the results further. Average errors of 0.33 and 0.15
ppm were obtained for the HN and Hα shifts, respectively.
In this series of tests, the use of all assigned sequences
supplemented with random coil values is again superior
to the use of only the shifts of the most homologous
sequence supplemented with random coil shifts.

A comparison of the average errors with the correla-
tion coefficients (Tables 2, 4 and 5) shows that, in gen-
eral, both go hand in hand. A small average error corre-
sponds to a large correlation coefficient and vice versa.
One exception occurs for the Hα chemical shifts in the
second test case for IL-8 (4–72). The average error is
unusually high for the corresponding correlation coeffi-
cient. A visual inspection of Fig. 7 shows that a small
systematic shift occurs for the predicted Hα shifts. This is
probably caused by a referencing error for the PF4-M2
shifts, which were used in this test case. This points to the
importance of proper referencing of chemical shifts (Wis-
hart and Sykes, 1994).

Throughout this section, results were only discussed for
the HN and Hα atoms. However, tests have shown that
the results obtained for the side-chain atoms (e.g. Hβ, Hγ,
etc.) are comparable to the results obtained for the Hα

atoms (data not shown).

Discussion and Conclusions

From the investigation of all three test systems, it is
clear that ORB obtains excellent results when at least one
highly homologous, fully assigned protein is available for
the prediction process. This is very clear to see for IL-8
(4–72) and for the first series of the TF tests. For all
three proteins, it is possible to obtain accurate predictions
as long as a whole database of previously assigned pro-
teins is used. With decreasing sequence identity between
the query protein and the assigned proteins, the use of
more than one sequence becomes increasingly important
for the prediction process. This can easily be seen for the
cNTnC and the second series of the TF tests. Using a
whole database of assigned shifts, ORB gives reasonably
good results as long as one or more of the assigned se-
quences has at least 30% sequence identity to the query
sequence. In the test cases where only the least homo-
logous sequence was used, the results were sometimes no
better than if random coil values were used. This shows
that homologous assignment techniques using proteins
with sequence identities of less than 30% to the query

sequence do not seem to be useful for the prediction
process. Tests involving cNTnC and the second series of
TF (Figs. 10 and 9) clearly show that some predictions
can be very precise while others can be off by a consider-
able margin. To allow the selection of the predictions that
are most probably correct, a Confidence value is calcu-
lated for every predicted shift, as described in the Algo-
rithm section. On the basis of these confidence values, a
user can select dependable starting points to assist with
the manual assignment process. This procedure was used
with great success during the initial assignment of cNTnC
(M.X. Li (1996) personal communication).

ORB can be used as a stand-alone program to assist
the user during the manual assignment process or it is
possible to combine ORB with other computer assign-
ment procedures to allow a fast automatic assignment.
With the number of published protein and peptide assign-
ments increasing on a day-to-day basis, a program like
ORB that makes use of this information will facilitate
rapid assignment of a new protein. The program can be
accessed from the following URL: http://www/pence.
ualberta.ca/export/docs.
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